RELATIVITAS,



RELATIVITAS

A. TEORI RELATIVITAS KHUSUS
        Pada tahun 1905, Albert Einstein ( 1879 – 1955 ) mengemukakan teori relativitas khusus untuk menjelaskan batas kecepatan suatu partikel. Teori ini memberi penjelasan untuk benda – benda yang bergerak dalam kecepatan tetap . diantaranya:
1.      Hukum fisika adalah sama untuk semua kerangka acuan inersial, yaitu suatu kerangka acuan yang berada dalam keadaan diam atau bergerak terhadap acuan lainnya dengan kecepatan konstan pada suatu garis lurus. Semua gerak adalah relatif. Kecepatan obyek hanya dapat dinyatakan secara relatif terhadap obyek lainnya dan tidak mungkin dinyatakan secara mutlak.
  1. Kelajuan cahaya dalam vakum memiliki nilai yang sama dalam semua kerangka acuan inersial yaitu sebesar c = 3 x 108 m/s
       Karya besar Einstein inilah yang merupakan tonggak dari fisika modern, dan disebut teori relativitas khusus karena teori relativitas ini hanya berlaku bagi kerangka acuan inersial. Selanjutnya baru pada tahun 1916 Einstein mengusulkan teori relativitas umum yang berlaku bagi semua kerangka acuan baik inersial maupun non inersial.
    
B. PENJUMLAHAN KECEPATAN SECARA RELATIVISTIK
        Pada fisika klasik, Newton telah menyatakan bahwa semua gerak adalah relatif.
Akan tetapi penjumlahan kecepatan relatif menurut Newton tidak akan berlaku jika kecepatannya adalah mendekati kecepatan cahaya c.
        Oleh karena itu berdasarkan transformasi Lorentzs tentang kecepatan, Einstein mengoreksi kesalahan penjumlahan kecepatan relatif tersebut dengan memberikan persamaan yang berlaku untuk penjumlahan kecepatan relativistik

            v =     m/s           ( 1 )
Keterangan :
     v  =  kecepatan relativitas khusus ( m/s )
     v1 = kecepatan benda/partikel pertama terhadap pengamat ( m/s )
     v2 = kecepatan benda/partikel kedua terhadap benda/partikel pertama ( m/s )
     c   = kecepatan cahaya = 3 x 108 m/s

Rumus penjumlahan untuk kecepatan relativistik maka kecepatan relatif  yang diperoleh harganya tidak akan mungkin melebihi kecepatan mutlak c. 

C. PEMUAIAN WAKTU
        Dua buah jam yang identik jika sebelumnya sudah dicocokkan dan diletakkan diam bersebelahan akan selalu menunjukkan waktu yang sama. Akan tetapi jika salah satu jam memiliki kecepatan mendekati kecepatan cahaya, maka jam tersebut akan berjalan lebih lambat. Dapat disimpulkan bahwa waktu yang diukur oleh sebuah jam dalam kerangka bergerak menjadi mulur bila diamati dari kerangka diam, peristiwa ini disebut dilatasi waktu atau pemuaian waktu
        Berdasarkan penjelasan tersebut terbukti bahwa waktu juga bersifat relatif. Untuk mengukur selang waktu relatif dapat digunakan rumus :

                 sekon     ( 2 )

Keterangan :
       ∆t  =  selang waktu relativistik ( sekon )
       ∆t0 =  selang waktu sejati  ( sekon )  
         > 1  = tetapan transformasi

Selang waktu sejati adalah selang waktu yang diukur oleh jam atau pengamat yang diam terhadap kejadian sedangkan selang waktu relativistik adalah selang waktu yang diukur oleh jam atau pengamat yang bergerak terhadap kejadian. Faktor pengali  disebut tetapan transformasi dan harganya selalu lebih besar dari 1. Akibatnya pada rumus (2) di atas akan  berlaku ∆t selalu lebih besar daripada ∆t0 atau dapat dikatakan bahwa selang waktu relativistik selalu lebih lama daripada selang waktu sejati.

D. KONTRAKSI LORENTZ
        Benda yang diberikan kecepatan mendekati kecepatan cahaya akan memiliki perubahan panjang, perubahan tersebut disebut panjang relativistik . Harga panjang relativistik ini dirumuskan sebagai :

            L  =  Lo  = Lo.   (  m  )       ( 3 )
Keterangan :
        L  = panjang relativistik ( m )
        Lo = panjang sejati ( diam )  ( m )
        v  = kecepatan relativistik benda ( m/s )
        c  =  kelajuan cahaya dalam vakum = 3 x 108 m/s

        Karena tetapan transformasi γ harganya selalu lebih besar dari 1 ( γ > 1 ), maka sebagai akibatnya harga relativistik L akan selalu lebih kecil dari harga sejati Lo, atau dapat dinyatakan panjang relativistik selalu lebih pendek daripada panjang sejati ( L < Lo ). Efek berkurangnya panjang benda jika bergerak sejajar terhadap arah memanjang benda ini disebut penyusutan panjang atau kontraksi panjang. Peristiwa ini pertama kali diramalkan oleh Hendrik Anton Lorentz, seorang fisikawan Belanda, karena itu peristiwa penyusutan panjang ini disebut juga kontraksi Lorentz



E. MASSA DAN MOMENTUM RELATIVISTIK
Telah dibuktikan bahwa panjang dan selang waktu ternyata bersifat relatif, sehingga menimbulkan pertanyaan mungkinkah massa juga bersifat relatif.
         Berdasarkan hukum kekekalan momentum akhirnya Einstein kembali dapat membuktikan bahwa massa suatu benda yang bergerak dengan kecepatan relativistik akan bertambah besar dan berarti bersifat relativistik pula. dapat dihitung dengan menggunakan rumus :

          m =  mo     kg         ( 4 )

Keterangan :
          m   =   massa relativistik ( diukur terhadap kerangka acuan yang bergerak
                     terhadap benda ) dalam kg
          mo =  massa diam benda ( diukur terhadap kerangka acuan yang diam terhadap
                    benda ) dalam kg
          v    =  kelajuan relativistik benda ( m/s )
          c    =  kelajuan cahaya dalam vakum = 3 x 108 m/s
          γ    =  tetapan transformasi > 1

        Berdasarkan rumus di atas, jika kecepatan benda v ditambah terus hingga harganya sama dengan kecepatan cahaya c ( v = c ) maka massa benda akan menjadi tak terhingga ( m  ), dan ini berarti dibutuhkan gaya-gaya yang tak terhingga pula besarnya agar benda dapat mencapai kecepatan cahaya c. Dari keadaan ini dapat disimpulkan bahwa tidaklah mungkin suatu benda diberi kecepatan sebesar c, sehingga c adalah batas maksimum kecepatan semua benda  
         Sebelumnya pada fisika klasik sudah dijelaskan bahwa jika suatu benda yang bermassa m bergerak dengan kecepatan v maka benda akan mempunyai momentum sebesar :
          p  =  m v

Pada relativitas khusus, karena benda bergerak dengan kecepatan relativistik maka momentum yang timbul disebut momentum relativistik. Besarnya momentum relativistik ini juga merupakan hasil kali antara massa dengan kecepatan, tetapi massa dalam hal ini adalah massa relativistik, sehingga :
          p = m v = γ m0 v =   kgm/s          ( 5 )
 Keterangan :
         p = momentum relativistik benda ( kgm/s )
         m = massa relativistik ( kg )
         v  = kecepatan relativistik ( m/s )
         mo = massa diam benda ( kg )
         c  = kecepatan cahaya. ( m/s )

F. ENERGI RELATIVISTIK
         Hubungan yang paling terkenal yang diperoleh Einstein dari postulat relativitas khusus adalah mengenai massa dan energi. Einstein berhasil menurunkan rumus energi relativistik yaitu :

           Ek = E – Eo = m c2  - mo c2    Joule       ( 6 )

Keterangan :
           Ek  = energi kinetik relativistik (  J )
           E    = energi total ( J )
           Eo  = energi diam  ( J )
Dari persamaan di atas nampak bahwa energi merupakan hasil perkalian antara massa dengan kuadrat kecepatan mutlak, sehingga ada kesetaraan antara massa dan energi. Jika suatu partikel memiliki massa sebesar m maka partikel ini akan memiliki energi sebesar :
            E =  m c2    Joule       ( 7 )
Keterangan :
         E = Energi total partikel ( J )
         m = massa partikel ( kg )
         c  = Kelajuan cahaya = 3 x 108 m/s

Hubungan kesetaraan antara massa dan energi ini pertama kali dikemukakan oleh Einstein yang sangat terkenal disebut sebagai hukum kesetaraan massa – energi Einstein.

Comments

Popular Posts